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Abstract 

This paper grew out  of  a desire on the part  of  its au thor  to be able to explain, for philos- 
ophy, the  significance o f  Q u a n t u m  Mechanics.  The  traditional formulat ion,  based on 
Hilbert spaces and operators on them,  leaves much  to be desired if, for example,  one is 
interested in the theory o f  physical measurement .  (It  may  fairly be asked what  the  
operat ion on a state func t ion  o f  partial differentiat ion really has to do with the  actual 
business of  measuring the m o m e n t u m  associated with tha t  state function.)  

Of  great interest  here,  o f  course,  are the uncer ta in ty  relations. They  have done m u c h  
to still the  determinist ic  belief that  na ture  is, at least theoretically,  ul t imately controllable. 
They  have conjured up again the venerable quest ions  about  form versus substance in the  
theory o f  mat ter .  T hey  are, then,  as fundamenta l  to phi losophy today as any other  
contemporary  issue. And  ye t  their explicat ion is deeply problematical  because of the  
relatively comphca ted  form of  the usual  presentat ion o f  these relations. There will be 
more  on this topic in the second section, together  with what  I believe to be a 's implest-  
possible'  reformulat ion.  

The  reformulat ion o f  Q u a n t u m  Mechanics which is presented below takes its inspi- 
ration f rom the point  of  view that  measurement  (or physical knowledge) requires con- 
servation laws, and tha t  these in turn invariably involve symmet ry ,  and hence groups. 
Thus ,  as with the uncer ta in ty  relations, a concomi tan t  part  o f  knowledge is an associated 
inability to know which arises out  of  a symmet ry  group. 

Less than  that  is accomplished here. However,  Q u a n t u m  Mechanics is brought  signifi- 
cantly closer to group theory,  and ease o f  interpretat ion.  Fur ther ,  the techniques  are 
sufficiently simple, mathemat ical ly ,  and in terms of  justif ication of the me thods  used, 
that  they might  well be subst i tu ted for the traditional approach for the teaching of  this 
subject to undergraduates .  

1. The Fundamentals of  ttarmonic Analysis 

Presented here are enough of the definitions and results of Harmonic 
Analysis to make the approach below understandable to the initiate in this 
area. This material is readily available in more detail. See, for example, 
Reiter (1968). 

Definition 1.1. A locally compact abelian group, G, is an abelian group 
which has been endowed with a topology (system of open subsets) in such a 
way as to make the operations of multiplication, and the taking of inverses, 
continuous. Also, each element of G has a compact neighbourhood. 
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(The purpose of topology here is, as usual, to make sense of the term 
'continuous' in a general context.) 

Definition 1.2. The dual group, G*, of G consists of all continuous homo- 
morphisms g* of G to the unit circle in the complex plane. Multiplication in 
G* is defined by 

(glg2)(g) = gl (g)g2(g) for all g in G 

The topology of G* is obtained by using the 'compact-open' topology, defined 
below. 

Definition 1.3. The 'compact-open' topology of G* is obtained by choosing 
as a sub-basis of open sets all the sets U(A, P), where A is a compact subset of 
G, P is a simple open arc of the unit circle in the complex plane, and g* is in 
U(A, P) if, and only if, g*(A)ties wholly in P. 

With these definitions we have: 
Theorem 1.1. G* is a locally compact abelian group if G is. Further, (G*)* 

is naturally homomorphic to G. 
It might be noted, by way of example, that R n (with the usual topology) 

has dual group R n with, again, the usual topology. The integers under addition, 
with the discrete topology (all subsets are open), have as dual group the group 
of rotations of the circle, which is compact, and vice versa. Indeed, we have: 

Theorem 1.2. If  G is compact, then G* is discrete, and vice versa. 
Theorem 1.3. Let f : G -+ C be a function from G to the complex numbers, 

and suppose that f is continuous and has compact support (i.e. vanishes out- 
side some compact subset of G). Then the Haar Integral, f a  f(g),  is defined, 
with all the usually expected properties of an integral. It has the additional 
property that it is invariant under G-translation. With this requirement, it is 
unique up to multiplication by a fixed positive scalar. 

This sense of integration can sometimes be extended to include some 
functions which do not have compact support. R n is a good case in point. 

Definition 1.4. Let f :  G -+ Cbe,  as above, a function from G to the com- 
plex numbers. We define the dual function, f* ,  of f ,  as a function from G* to 
C b y  

f , ( g , )  = f f (g )g , (g -1)  
G 

In case G is R n, f*  is simply the Fourier transform of f Indeed, this 
definition, and Harmonic Analysis, generalises Fourier Analysis. 

Theorem 1.4. (Plancherel.) With a suitable (and available) choice of Haar 
integral for G*, 

G G* 

This tells us that if If(g) 12 can be regarded as a probability distribution on 
G, by dint of 

f I f(g)  12 = 1 
G 
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then ]f*(g*)12 can be regarded as a probability distribution on G* for the 
same reason. 

Theorem 1.5. fa* f*(g*)g*(g) = f(g). That is: ( f * ) *  =f .  
Throughout this paper G wilt stand for a locally compact  abetian group, G* 

for its dual, and f(g) a function from G to the complexes with L 2 norm 1. 

2. The Uncertainty Relations 

Consider the following theorem, which, it is claimed here, is the ideal 
expression of the uncertainty relations: 

(There have been many variants on the classical Heisenberg formulation. 
See, for example, Bruijn (1965) and Weyl (1950). 

Theorem 2. t. Let f f* ,  G and G * be as above, and suppose that  f and f *  
are in L 1 over their respective groups. Then 

f If(g)l f L;*(g*)l> 1 
G G* 

Proof. 

G G* G G* 

= f f I~)f*(g*)g*(g)I (because Ig*(g)I = 1) 
G G* 

G G* 

= I f f(g)f(g)[ (from Theorem 1.5) 
G 

= f I f (g) [2  = 1 
G 

Before this result can become relevant to physics, it is necessary first to 
remember that if  is d s '  ' * , " G " regar ed a position space,  then G may be regarded as 
frequency space'. Further, if I f(g) 12 is regarded as a probability distribution 

over G, then I f*(g*) 12 is the associated probability distribution over G*. 
Finally, the L 1 norm o f f ( g )  is a decent and adequate measure of  the entropy 
associated with the probabili ty distribution If(g)12. That this is so may be 
seen by observing that 

f I f (g) I .  1 
G 

then If(g)12 cannot have compact  support U with measure ~t(U) less than t 2, 
since otherwise 

t = f  [ f (g ) i  = f l f (g) l~< [f]2 I = (u(U)) 1/2 < t -  
G U 

22 
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This result is never invalidated by an absence of functions f for which all of 
the integrals needed here are defined, Indeed, P. Milnes (private correspondence) 
has shown that the functions f satisfying 

f C  L1 and L 2 over G 
and 

f *  E L  1 and L2 over G* 

are dense in the set of all continuofis functions from G to C which vanish at 
infinity. 

Unfortunately, our description of G* as 'frequency space' is somewhat 
unclear from a physical point of  view. Indeed, even the notion of G as 
'position space' leaves something to be desired if we wish to make some 
quantitative sense of the term 'position'. We do this for both G and G* by 
considering continuous representations of G to R +, the reals under addition. 

Let P : G -+ R + be such a representation of G. With respect to P we might 
say that the 'distance from ql to g l '  is 

[P(gl) - -  P(gz)l = [P(glg2-1)[ 

Let K o be the kernel o fp .  

K o = {gE G tp(g) = O} 

G/K o is isomorphic to the range of P- Also, observe that for any real X, 
(Xp)(g) = X(p (g)) is again a representation of G to R +. Finally, note that the 
mapping 

g ~ eiXO(g) 

is a continuous representation of G to the unit circle, and so is an element of 
G*, say g~o" 

Now the mapping 3 defined by 3(gxo) = X is a homomorphism from the 
subgroup of G consisting of the gxp provaded that gxo 4:1 for X :/: 0 m R. 
If this fails to obtain, then there is a positive Xo such that 

ei~op(g) -~ 1 

or, 

o r ,  

Xop(g) = 0 Mod (270 

P (g) - 0 Mod (2~r/Xo) 

and G/K o = Z, the integers. 
If  we assume that this last, exceptional case is not the one we are dealing 

with then we may interpret G and G*, relative to P, as follows: 
lp(glg2-1)[ is the distance f romgl  tog2 while, 
3(ga*p) is a physical quantity (momentum in the p-direction) which is 

preserved under G-translation. 
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In case G/Kp is Z, we can Interpret/3(gxo ) as angle, and p(g)  as angular 
momentum.  There will be more  on this subject in the section 'Generalising 
Planck's Assumption' .  

3. Differentiation 
Any analogue of  quantum mechanics must make some sense of  the notion 

of the derivative of a function. The functions, f ,  which we deal with here are 
functions from G to C. 

We introduce the following notation, soon to be justified as a sense of  
partial differentation: I f  p : G* -~ R + is a continuous representation of  G * into 
the additive group of  the reals, and f :  G -+ C is a function from G to C, we 
write: 

Of(g) = i f f*(g*)p(g*)g*(g) (3.1) 
Op ,/ 

G* 

The reader may easily verify the fact that if  G = R n, 3f/Op is simply one of  
the directional derivatives o f f  This result is standard in Fourier analysis, and 
follows from an integration by parts. 

In order to justify regarding the operation O/Op as a differentiation, we offel 
the following: 

Theorem 3.1. Let p and/3 be continuous representations of  G* t o R  +, and 
let f, h be functions from G to C. Suppose that  integrals are defined as needed. 
Then: 

( f  + h)(g)= (a) ~p f (g) + -~p h (g). 
I 

If  k E C, ~ -~ (k f ) (g )  = k ~-~ (f)(g). (b) 

~pf(g) + f(g) ~o h(g). (c) ( fh)(g)  = h(g)  

(d) If  p +/3 be defined in the usual way (viz. (p +/3)(g*) = p (g*) + ~(g*)) 
then 

p + ~ f = ~ p f  + f 

(e) ~p f (g)= f (g). 

( f )~p(~pf ) (g)=_f f . (g . ) (p(g , ) )Zg , (g) .  
G* 
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(g) I f f  and h are identical in a neighbourhood of g, then -~pf(g) = h(g) 
(Locality of the derivative.) 

G 

(i) If f is real, then ~ f  is real also. 

Proof." (a), (b) and (d) follow immediately. To show (c) we examine 

~(j'h)(g)=i f (fh)*(g*)p(g*)g*(g) 
G* 

=i f ~ (fh)(k)g*(k-')p(g*)g*(g) 
G* G 

=i ~ f f(k)h(k)g*(k-lg)p(g *) 
G* G 

We use 
f(k) =i ~ f*(r*)r*(k) 

G* 

h(k) = i f h*(s*)s*(k) 
G* 

and 
f q*(k) = f k(q*)=-ig(q *= 1") 

G G 

~¢Ih)(g):-i J f f ~f*(r*)h*(s*)r*(k)s*(k)g*(k-lg)P(g *) 
G* G* G* G 

=-i  ~ f ~ (f*(r*)h*(s*)g*(g)p(g*)) fk(r*s*g *-1) 
G* G* G* G 

G* G* G* 

=- f f f*(r*)h*(s*)r*(g)s*(g)p(r*s*) 
G* G* 

=-- f f f*(r*)h*(s*)r*(g)s*(g)(p(r*) + p(s*)) 
G* G* 

=- f f*(r*)r*(g)p(r*) f h*(s*)s*(g) 
G* G* 

- - -  ~ mr*)r*(e) f h*(s*)s*(g)0(,*) 
G* G* 

= f(g)h (g) + f(g) ~p h (g), as required. 
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Fo show 

c3--~ f (g) = f (g) 

we need only note that (O/3p)f(g) is the function whose dual function is 
ip (g*)f*(g*). Our result follows from the observation that 

311 

-{3(g*)p (g*)f*(g*) = - p  (g*)~(g*)f*(g*) 

(f) follows in the same way. To show (g) (locality of  the derivative) we 
proceed by cases: 

Case 1. Suppose f(g) >~ 0 for all g in G, and f(g) = 0 at go. We want to 
show that (~/Op)f(go) = O. To do so, let h(g) = fl/2(g). Then 

3 ~ h2 =2h(go)~ph(go) = ( g o )  (by e)) = 0 

(O/Op)h (go) = O. 
The same result follows easily in case f(g) <~ 0 for all g. 
Case 2. Suppose f(g)is real-valued, and f(g) = 0 in a neighbourhood of  go. 

We want, again, that (O/3P)f(go) = 0. We may write f as f l  + f2 where 

and 

f l  (g)  = ;(g) i f  f(g) ~ 0 

0 otherwise 

f2 (g) = f(g) if f(g) <~ 0 

0 otherwise 

Then 

~p f (go)  = fa(go) 0  fl(so) + -= 

by the results o f  Case 1. 
Case 3. If  f :  G -+ Cis  0 in a neighbourhood of go, then (~/~P)f(go) = O. 
We proceed in a manner similar to the proof  of  Case 2, writing f = f l  + if2, 

where f l  and f2 are both real-valued. The result follows immediately as in 
Case 2. 

Case 4. If  f :  G -+ C and h : G -+ C are identical in a neighbourhood of  go, 
then (O/OP)f(go) = (O/bp)h (go). To see this, we need only consider f -  h, 
and apply Case 3. 

We now show (i): That if f is real, so too is (O/bp)f. 
This result hinges on the fact that the Haar integral, taken over an abetian 

group, is invariant under the replacement of  the argument by its inverse. This is 
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easily shown, and will not be proved here, only used. Now: 

I(g)= -i f f f(h)~o(g*) 
G* G 

=-i f ff(h)(g*)-I(h-'g)p(g *) 
G* G 

=-i f f f(h)g*(h-*g)p((g*) -a) 
G* G 

= + i  f f f( h)g*(h-l g)p(g*) = ~ f(g) 
G* G 

(because f(h) and p(g*) are real) 

(by the remark above) 

It only remains to show that 

G 

f ~pf(g) = 
G 

We have 

GG*G 

= f f f(h)g*(h-l)lO(g*) f g*(g) 
G G* G 

= f f f(h)g*(h-1)p(g*)8(g * = 1") 
G G* 

= f f (h) l*(h-1)p  (l *) 
G 

= f f ( h ) . l  . 0 = 0  
G 

This sense of differentiation will prove to be the key in interpreting 
quantum mechanics in an abelian group context. It will, in particular, allow 
us to present the Schroedinger equation as an integral equation, derived from 
an entirely simple and natural principle, which we present in the next section. 

4. The Schroedinger Equation 
It is one thing to have a candidate for a replacement for the conventional 

uncertainty relations: It is another to show that these can be developed in a 
context which actually permits the usual and expected calculations of quantum 
mechanics. That is what is done in this section. 

Let us first briefly review the situation for conventional quantum mechanics 
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in its most simple-minded terms. (That is, based on classical physics, without 
spin or time considerations, and without concern for systems of identical 
particles.) In this context we may assume that there is given a physical quantity 
P(x, p), which is a function of variables x (in Rn), the position vector, and p 
(in (Rn)*), the momentum vector. Elementary quantum mechanics consists in 
replacing Pi by ih(3/3xi) and solving the partial differential equation (called 
the Schroedinger equation) 

The eigenvalues Po are, in this theory, the observed values which will arise 
when the physical quantity P(x, p) is determined experimentally. 

We note in passing that this substitutional rule leading to a differential 
equation is in trouble if either the Pi do not arise in purely integral powers or 
if the terms xi and Pi are mixed in multiplication. This last is problematical 
because, while xi and Pi commute, xi and ~/Oxi do not, and the operator 
P[x, ih(O/~x)] may, as a result, be ill-defined. Both of these difficulties 
disappear in the approach below. 

Yet another complaint with this conventional approach arises when one 
tries to assess the contribution of quantum mechanics to the theory of 
knowledge, or to the theory of measurement. To wit: The substitution 
Pi -~ ih (O/Oxi) rests upon grounds which are difficult to generalise, and 
rather overly technical. 

For our purposes here we shall presuppose Planck's assumption which will 
be interpreted to be the statement that if G is position space, then G* is 
momentum space or, equivalently, frequency space. Thus we shall take as 
physical expressions functions P(g, g*) from G x G * to R. This done, it 
remains to find the analogue of the Schroedinger equation. 

In doing this, it is worth while keeping in mind the physical interpretation 
of the mathematical devices being used: 

G-Each element represents a 'position'. 
G *-Each element represents a 'frequency'. 
f :  G --> C is a state function. 

f If(g) [2 is the probability that the particle will be found within S. 
S C G  

Suppose, then, that we are given a real-valued function P(g, g*) from 
G x G * ~ R which represents some physical quantity, such as energy. We 
postulate the following: 

Definition 4.1. The 'pure' states,/{g), associated with P(g, g*) are those 
which produce local minima (on average) ofP(g, g*) over both G and G*. 

Put more precisely this says that the pure states, f(g), associated with 
P(g, g*) are those for which 

f f P(g, g*)lf(g)[2lf*(g *) 12 
G G* 
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is a local minimum, subject to 

i f (g) t  2 = 1 

G 

We then have the following: 
Theorem 4.1. If  f(g) is a pure state associated with the physical quantity 
P(g, g*), then f(g) satisfies the equation 

G G G* 

for all g in G (4.1) 

where po is the average value of  P(g, g*) over G and G * with respect to f and 

f*.  
Proof. Minimising fG fc* P(g, g*) If(g)121f*(g*)12 by choice o f f  subject 

to fG[ f(g) t 2 = 1 is the same as minimising 

I ( f ) =  G f ~*f P(g' g*) If(g)[2lf*(g*)lu/(J 'f(t)12) 2 

subject to no constraints at all. 

The techniques of  minimising integrals are well known. We use a standard 
one here. Let f (g )  be replaced by f (g)  + erl(g), where e is inR, and ~(g) is 
chosen arbitrarily as a function from G to C, subject to the constraint that all 
the integrals used continue to be defined. We have then I(f+ erl). For a 
minimum we insist that 

d 
-~eI(f+ e~) = 0 at e = 0, for all choices o f t  

To perform this calculation we first write I(f)  as 

[(f+ erl) then takes the form: 

G G G G* + erl(h))(f(k) + er~(k))g*(h-lk) 

J( f ( t )  + e r r ( f ) ) ( f -~  + e ~ ) )  2 
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It fol lows directly from (d/d)I(f+ er/)[e= o and fG If(t)t 2 = 1 that 

GGGG* 

+ f(g)f(g)rl (h)f(k) + f(g)f(g)f(h)~7 (k))g*(h-I k) 

: f f f 
G G* G 

for all r/. 
In order to employ the arbitrariness o f  the r~(g) we rewrite the above so as 

to involve g as the variable in each occurrence of  the ~7, obtaining, 

GGGG* 

GGGG* 

+ f f f f P(h, g* ) ( f (h ) f (h ) f ( k )~ ) )g* (k - lg )  
GGGG* 

= 2 f f P(h, g*)lf(h)121f*(g *) t 2 • f (rl(g)f(g) + ~7(g)f(g) 
G G* G 

The arbitrariness o f  r~ (g), together with the independence o f  7? (g) and ~ (g) 
gives us 

GGG* 

GGG* 

= 2 f f e(h, g*)If(h)[2 [ f . (g . )12f(g)  
G G* 

But 

f f P(h, g*)if(h)12 [ f * ( g * ) 1 2  -- e ° 
G G* 

and we have 

f(g) f e(g, g*)lf*(g*)t e + f f P(h, g*)lf(h)12f*(g*)g*(g) = 2P°f(g) 
G* G G* 

Corollary 4 . i .  I fP(g ,  g*) takes the form P(g, g*) = P 1 ( g )  +P2(g*), then 
(4.1) takes the form 

f p(g, g , ) f , (g , )g , (g )= f(g)pO (4.2) 
G* 
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/'roof. 
LetP1 ° = fPl(g)lf(g)l 2 and P2 ° =  f P2(g*)lf*(g*)l 2 

G G* 

Then we have pO = plO + p2O. Now with e(g, g*) = P1 (g) + P2 (g*), (4.1) 
becomes 

f(g) f (P1 (g) + P2 (g*))lf*(g*)12 + f f (P1 (h) + P2 (g*))f(h)2f*(g*)g*(g) 
G* G G* 

= 2(pl ° + P2°)f(g) 

or 

f(g)Pl(g) f I f* (g*) [  2 + f(g) f P2(g*)lf*(g*) 12 
G* G* 

+ f f Pl(h)lf(h)[2f*(g*) g*(g)+ f f P2(g*)[f(h) [2f*(g*)g*(g) 
G G* G G* 

= 2(P1 ° + e2°)f(g) 

Thus, 

f(g)p,(g) + f(g)e O + fp,(h)lf(h)l~ f f,(g,)g,(g) 
G G* 

+ f If(h)[ 2 f P2(g*)f*(g*)g*(g) = 2 (/°10 + P2°)f(g) 
G G* 

and 

Pl(g) f f*(g*)g*(g) + f(g)P2 ° + Pl°f(g) + f P2 (g*)f*(g*)g*(g) 
G* G* 

= 2(Pl  ° + P2°)f(g) 

or 

or 

or 

P1 (g) f f*(g*)g*(g) + f P2(g*)g*(g) = (P10 + e2°)f(g) 
G* G* 

f (PI (g) + P2 (g*))f*(g*)g*(g) = (P10 + P2°)f(g) 
G* 

f P(g, g*)f*(g*)g*(g) pOf(g) 
G* 

as claimed. 
The example of  a single particle in a force field wilt illustrate how this 

formulation works and will show, in that simple instance, how the approach 
here leads to the 'conventional '  Schroedinger equation. 
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The expression for the energy of such a system is E(x, p) = pt  2 + p2 2 + 
p3 2 + V(x). The group G here is R 3, while G* is the usual dual (R3) * ~-R 3. 
We have three 'natural' representations 

Pi (i = 1, 2, 3) 

via 

of (R3) * 

We have also that 

p,(x;, xL = x? 

Pi =/~p/(x*) = h x *  (i = 1, 2, 3) 

Making this substitution, E(x, p) becomes 

~'(x, x*) =¢~20 12 (x*)+ p22(x *) + p32(x*)) + V(x) 

Since E(x, x*) splits into a sum of its x part and its x* part, we may use 
the equation (4.2) of Corollary 4.1 to obtain, for the state function f(x) ,  the 
condition 

t" 

J [~2(012(x *) + p:2(x*)  + p32(x*)) + V(x)] f * ( x * ) x * ( x )  = Eof(x ) 
(R3) * 

(Here, x*(x) " * +x~x3)] . )  e x p [ l ( X l X l  * = + X 2 X  2 

It is at this point in showing that equivalence of the Haar integral formu- 
lation and the usual Schroedinger equation that we use the notion of derivative 
developed in the third section. Our equation becomes 

_~2  _ _  - -  + + V(x) f (x )  = Eof(X) 
~p2  + 0022 

In this instance Fourier analysis shows, without difficulty, that O/OPi = 
~/Oxi,  and we have, clearly, achieved the usual and accepted differential 
equation for this system. 

In fact, so long as we stay with groups G, which are isomorphic to R n, and 
with functions E(g, g*), which split as E(g, g*) = El (g)  + E2(g*) ,  it is soon 
clear that the equation of Corollary 4.1 is equivalent to the differential 
equation 

x E 1 . . . .  ,Xn; ih 3x---~l . . . . .  ih 1,.  • . ,  Xn)  = E o f ( x l  . . . . .  xn )  

In the event that these last assumptions should fai l  to hold, then equation 
(4.1) remains usable, while the usual operator substitution becomes difficult, 
arbitrary, or impossible. 



318 J E R R Y  M A L Z A N  

5. Generalizing Planck's Assumption 

Quantum mechanics was truly and simply born from the assumptions 

E = h f  
and Pi = hfi 

where E, Pi, l a n d  ]) are, respectively, the average energy, momentum, time- 
frequency, and length-frequency in the ith direction of an indivMual particle. 
('Length-frequency' refers to the number of wave-lengths per unit interval.) It 
was these assumptions which forced energy and momentum to be regarded as 
points in the dual of time-position space, rather than simply as measurable 
observables in time-position space. 

It is necessary here for us to have some formulation of these equations for 
arbitrary locally compact abelian groups, other than R 4. To this end we make 
the following observations: 

(i) The ith component, Pi, of the momentum of a particle is said to be a 
'conserved quantity' chiefly because it is invariant under G-translation. 
Similarly, energy is invariant under G-translation. 

(ii) The central and fundamental assumption of Quantum Mechanics is 
that these conserved quantities measured in position-space are pro- 
portional to quantities in the dual of position-space. 

(iii) The state functions f :  G ~ C that we have used have not as yet been 
provided with a thorough physical interpretation. While it is clear 
enough that 

f rI(g) l 2 
S C G  

may be interpreted either as the probability of finding the particle in 
S, or as the average density of that particle in S, it is not yet quite 
clear what the phase of f(g) represents physically. 

We begin with the following simple observation, of a purely mathematical 
nature: 

If  p: G* -~ R + is a continuous homomorphism from G* to the reals under 
addition, then g* ~ eiP(g *) is a continuous homomorphism from G * to the 
unit circle of the complex plane. Hence this last mapping is an element of 
(G*)*, which is homomorphic to G. It follows that there is ag  in G such that 

g*(g) = e ip(g*) for all g* 

and that the notation (O/3p)f, for functions f : G ~ C, may be replaced by the 
equivalent notation (3/Og)f. 

The state function f (g)  may be written as 

f (g)  = R(g) e i°(g), with R(g) >~ 0 

R(g) was interpreted in (iii), above. It remains to interpret O(g), and we do this 
as follows: 

Choose h in G. Then (OO/Oh)(g) is proportional to a conserved physical 
quantity (momentum, energy, etc.). 
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OO/Oh is not, however, always defined. In order to achieve greater generality 
we must revert to representations p : G* ~ R +, and speak of 30/Op. A choice of 
p still determines a one-dimensional subgroup, H, of G, as follows: 

Let K*(p) be the kernal o fp  in G*. Then H consists of those h in G for 
which 

g* E K*(p) ~g*(h)  = 1 

Hence we have: 
Definition 5.1. The average (generalised) energy, E m in the direction p of a 

system in a group G with state function f (g)  is given by 

Ep = - X  (g) If(g)] 2, with X a universal (Planck's) constant 

G 

Here the term 'energy' is also being used to cover such concepts as momen- 
tum, and angular momentum. The interpretation depends on the choice of the 
group, G, and of the representation (or direction), p. 

We remarked earlier that G* can be regarded as 'frequency space'. In order 
to make numerical, or observational, sense to this term, we must again choose 
a representation, p, from G* to R +. This done, the definition below seems 
reasonable, and correct. 

Definition 5.2. The average (generalised) frequency, v o, in the direction p 
of a system in a group G with state function f (g)  is given by 

~0 = f P(g*) If*(g*)l  2 
G* 

If  these definitions be accepted, then the generalisation of Planck's 
assumption arises as the statement of the next, simple theorem. 

Theorem 5.1. Ep = XVp. 
Proof 

, , =  f .(g*)Jf*(g*)l ~= f f ,(g*)f*(g*)fO)g*O-b 
G* G G* 

G 

0 ie(h) - iO(h) =i f ~(R(h)e )R(h)e 
G 

=i (h) R ( h ) + i  2 fR2(h)~-'~(h) 
G G 

i (~e2 (h)- r Jf(h)12 ~o 
G G 

= 0 + E o/X (by Theorem 3.1 (h) 

This completes the proof. 
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6. Conclusions, Suggestions, and Shortcomings 

I would like, finally, to itemise what I believe to be the successes of  this 
approach, together with some of the questions it leaves unanswered. I am no 
aware of any deficiency which this approach exhibits in relation to the 
conventional Hilbert space and operators approach. First, the successes: 

(1) This theory, offering as the sole condition the minimisation of the 
integral 

f E(g, g*)lf(g)[=lf*(g*)l = 
G G* 

offers an eminently simple criterion for an understanding of the roots 
of Quantum Mechanics. 

(2) The version of the uncertainty relations presented here which reads 

f lf(g)l f If*(g*)f> l 
G G* 

is far easier to explicate than the more familiar mean square formu- 
lation, and shows that uncertainty arises out of the character of 
matter itself, rather than the means of observing it. 

(3) For the reader who is irremediably 'hooked' on the mean square 
formulation, the following is available: 

Let p : G -+R + and/3 : G* -+R + be continuous homomorphisrns 
from G and G* respectively to R +. Let f(g) be a state function on G. 
With respect to the state function f w e  define the mean value, ~, ofp  as 

~= f p(g)tf(g)t = 
G 

Similarly, 

Let 

and 

Then 

f= f ~(g) lf*(g*)l 2 
G* 

60) = f 60 (g) - fi)2 If(g) 12 
G 

A03 ) = f (/3(g) -- ~-)2 i f . (g . ) j=  
G* 

30(1)] '~(P)'~@) >¼1 ~ 
This will not be proved here. 
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(4) We note that uncertainty has been placed in the context of groups, and 
of symmetry, where it properly belongs, at least so far as physics is 
concerned. The lessons of Quantum Mechanics are more easily generalised 
from here than they are from Hflbert spaces, and operator algebras. 

Still, this theory does not yet deal adequately with many questions, some 
of which are presented below. 

First, there is the question of selection rules for systems of identical 
particles. In an entirely satisfactory theory of Quantum Mechanics these 
rules should arise naturally, and the question of the individuality of particles 
should arise in some sort of formal uncertainty relation. 

Second, not very much has been said here about the problem of measure- 
ment, and the associated problem of the effect of Quantum Mechanics on the 
theory of knowledge, apart from the observation that the failure of particles 
to have simultaneously sharp position and momentum values is not simply a 
failure of our means of observation, arising instead as a feature of the particle 
itself. 

Thirdly, it should be mentioned that this method does not deal with mass 
and velocity as measurable quantities. In defence of this thesis, however, it 
should be pointed out that these quantities are a classic thorn in the side of 
Quantum Mechanics. 

Finally, there is a very interesting question, unexplored here, of what 
continuity, in a mathematical sense, has to do with continuity in a physical 
sense. The possibility presented here, of doing Quantum Mechanics in spaces 
other than R n, is that space is, for example, a discrete group. The consequences 
of this, of living in a discrete space which nevertheless appears continuous, are 
very much in need of examination. 

Yet for all this it is still arguable that the Harmonic Analysis presentation of 
Quantum Mechanics is much to be preferred to the usual presentation because 
of its increased generality, simplicity, and formal employment of symmetry. 
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